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,STRUCTURE OF THE GROUP OF SY)MPLECTIC MATRICES
AND THE STRUCTURE OF THE SET OF UNSTABLE CANONICAL SYSTEMS

WITH PERIODIC COEFFICIENTS

V.A. Yakubovich
(Leningrad)

Introduction /313*

We will consider a system of 2k linear differential equations

with periodic coefficients in canonical form
dx (0.1)
at IHt)x]

where H(t) is a symmetric matrix of piecewise continuous real

periodic functions with period 1,

(-- E )
I = 0

Ek is the unit matrix of order k, and x is a vector. Such systems,

which are very important in applications, were studied by various

authors [1,12] and others. The basic results were obtained by M. G.

Kreyn [1-61.

The problems which are encountered in applications have the

following character. The coefficients of system (0.1) are functions

of certain "structural" parameters. They must be selected in such

a way that all solutions of system (0.1) are bounded as t + - (the

corresponding motion is stable) or in such a way that among the solu-

tions there are unbounded solutions (unstable motion), or in such a

way that the solutions satisfy the inequality

j!x(t)ll<Ce1t , to (0.2)

for a given a > 0, etc. Sometimes, it is required to construct in

parameter space the corresponding regions or at least clarify where

these regions lie.

Sometimes the coefficients in system (0.1) (all or some of them)

are not known exactly,for example only their upper and lower bounds
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are known. Certain conclusions must be made with regard to the

boundedness or unboundedness of the solutions or the relative rate of

increase of the solutions as t -+ .

We note that such bounds present certain difficulties even

in systems with constant coefficients, when the system is integrated

in explicit form (if we have in mind efficient solutions).

The stability and instability criteria, and the estimatesof /314

the characteristic exponent give, to some extent, an answer to the

problems posed. At the present time, there are many known stability

criteria for system (0.1) (efficient and "exact" sufficient stability

conditions), but there are considerably fewer instability criteria,

and practically no estimates for the characteristic exponents.

In order to compare the various criteria and to understand

them, it is advantageous to study from the above point of view

(boundedness, unboundedness, etc. of the solutions) the entire

set of systems (0.1). This is also advantageous because the para-

meters may enter the coefficients of system (0.1) in various ways.

By studying the functional space 2 = {H(t)} we can reach certain

conclusions about the stability and instability regions in parameter

space in each concrete case. Such a study was undertaken in the

work of I.M. Gel'fand and V.B. Lidskiy [7]. It was shown in Ref. 7

that the set of all "strongly stable" matrices H(t) decomposes in

9 into a denumerable number of regions, and it. is exp;lained by. which

properties of the solutions the systems (0.1) are characterized in

a particular stability region.

Our main purpose will be to study the structure of the set of

all unstable systems (01l),,and also the set of systems whose solu-

tions satisfy the bound (0.2). In fact, we solve a much more general

problem, which is related to the study of the group of real simplectic

matrices, a problem which is formulated at the end of the introduc-

tion. Having solved this problem, we will be able to answer questions

of the following type: What is the structure of the set of matrices

H(t) for which the systems (0.1) have J, 0 4 j < k linearly indepen-

dent solutions with characteristic exponents a in the interval
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0 X aO < a < a1 where the numbers ao, al are given, and j linearly
independent solutions with characteristic exponents -a, -a1<-a<-a0 0

and 2k - 2j linearly independent solutions which are bounded both as

t + - and as t -+ -- ? It is possible to definefor the first j char-

acteristic exponents various bounds, and to impose certain conditions

on the bounds of the solution, etc.

By studying the structure of this set of "stable" and "unstable"

systems (0.1), we will arrive naturally at a general method which

will be used to obtain sufficient stability and instability conditions,

a topic which is the subject matter of this article.

We will use in the discussion which follows the following

notation:

UT transpose of matrix

U* transposed. complex-conjugate matrix,

E unit matrix,

if H is a real symmetric or Hermitian matrix (H* = H), then /315

111ll 'll, Max .

where hj are the eigenvalues of the matrix H, and for an arbitrary

matrix U

Ij U t = sip!IP

For real symmetric or Hermitian- matrices H
1
, H2, the inequality

HI . H2 denotes that (Hla, a) 4 (H2a, a) for all vectors a.

We will state the fundamental definitions and assumptions mainly

due to M.G. Kreyn, which will be used below.

I. The matrix X(t) of the fundamental system of solutions of

system (0.1) determined from the condition X(O) = E is called the

matricant of system (0.1). The value of the matricant in the period

This condition follows from the previous condition, since system
(0.1) has for the solution with characteristic exponent a also a
solution with characteristic exponent -a.
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X(1) is called the monodromy matrix of system (0.1). The eigen-

values of the monodromy matrix are called the multipliers of system

(O.1).

II. The matrix X(t) for any t is simplectic, i.e., it satisfies

the relation X*IX = I. The group of all real simplectic matrices

will be denoted by \$ . The spectrum of a simplectic matrix is

symmetric with respect to the real axis and with respect to the unit

sphere, i.e. the eigenvalues of a simplectic matrix decompose into

the pairs e
i
, e- i , the pairs p and p 1, and the quadruples re

re- i, r- lei r '-e-i(r p, are real). The multiplicity of the

eigenvalues which are equal to 1 and -1 is necessarily even.

III. The eigenvalues of a simplectic matrix X which lie on the

unit circle are divided into eigenvalues of the first and second

kind.

Let p = ei S be a simple eigenvalue of the matrix X and a be,'the

corresponding eigenvector Xa = eisa. Then [5],(l/i)(Ia,a) is a real

number which is different from zero. The eigenvalue p = ei is called

an eigenvalue of the first kind if (l/i)(Ia,a) > 0, and of the second

kind, if (l/i)(Ia,a) < 0. From the above, we can easily derive that

the eigenvalues p = ei9 and p* = e- if are of opposite kinds.

Let p = eif be an eigenvalue of multiplicity m and the cor-

responding subspace of roots. We assume that on !~ the Hermitian form

(l/i)(Ix,x) is diagonalized with ml positive and m2 negative squares.

On M , the form (l/i)(Ix,x) is non-singular, therefore m1 + m2 = m.

In this case, we say that ml eigenvalues of the first kind and m2

eigenvalues of the second kind coincide. In particular, if i /316

the form (l/i)(Ix,x) is positive (negative) definite, then p = el

is an eigenvalue of the first (second) kind of multiplicity m. In

the last case, simple elementary divisors n of matrix X-_XE correspond

to the eigenvalue p, i.e. in the invariant subspace o:,the matrix

X is reduced to diagonal form.

If at the point p = ei , m1 eigenvalues of the first kind and

m2 eigenvalues of the second kind coincide, then at the point p* = e
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m2' eigenvalues of the first kind and ml eigenvalues of the second
kind coincide.

Below, it will also be convenient to consider eigenvalues which
lie in the interior of the unit circle. in :terms of eigenva-lues of
the first kind and those which lie outside this circle in terms of

eigenvalues of the second kind. *Thus, the simplecticmatrix X has-k

eigenvalues of the first kind and k eigenvalues of the second kind.

The multipliers, like the eigenvalues of the monodromy matrix,
are also classified into multipliers of the first and second kind.

The multipliers can also be defined equivalently in another way (M.

G. Kreyn [5], Par. 4, I.M. Gel'fand and V.B. Lidskiy [71, p. 7).

IV.-. Let y be aclosed contour in the complex plane which is

symmetric with respect to the unit circle which does not pass through

the eigenvalues of the simplectic matrix X. Let zo0I be a subspace
of dimension m which is the union of the subspaces which correspond

to the eigenvalues which lie in the contour y. The subspace X6j will
be nondegenerate under the metric (i/i)(Ix,x). Let P be its' projection
matrix. The number m1 eigenvalues of the first kind and the number

nm2 eigenvalues of the second kind which lie on t.he contour y are
equal, respectively, to the number of positive and negative eigen-

values of the 'Hermitian matrix

IpiP Jp= pi. (0.3)

The matrix P can be defined using the formula derived by M.G. Kreyn:

~P=, 2!. (PEJK) ( X)I'? dp. (0.4)

Instead of the contour y, any contour can be used which contains part

of the spectrum andwhich is symmetric with respect to the unit
sphere.

V. System (0.1) is said to be stable if all its solutions
are bounded as t -+ . If, in addition to this, all systems with

matrices Hl(t) sufficiently close to H(t) have this property,

5



then system (0.1) is said to be strongly stable.2

System (0.1) is said to be unstable if among its solutions /317

solutions exist which are not bounded as t + , and strongly unstable

if this is also valid for all systems with matrices Hl(t) which are

sufficiently close tp H(t).

A necessary and sufficient condition that system (0.1) be stable

is that all its multipliers lie on the unit circle and that they cor-

respond to simple elementary divisorsof the matrix.

A necessary and sufficient condition that system (0.1) be stable

is that all its multipliers lie on the unit circle and that among

them there be no repeated multipliers of various kinds E5-7].

A necessary and sufficient condition that system (0.1) be

strongly stable is that at least one of its multipliers do not lie

on the unit circle.

We will consider the case of

a system of equations of order

greater than two, k > 1 (of course,

the discussion is also valid for
k = 1). The case of a system con-

sisting of two equations has been

studied in sufficient detail from

Fig. 1.- various points of view [2, 4, 5, 8,
9-12]. For the case k = 1, the

entire presentation which follows

can be made very concise (see [7], Par. 9, and [12], Par. 3). The

group C for k = 1 is homeomorphic to- the interior of a torus (see

Fig. 1). The matricant X(t) is a trajectory in Owhich starts at

2 Closeness is understood in the sense of the distance
_- ,H, 7

r (HI, H2 ) = X II (0)- H2 (t) 11 dt.

This definition is due to I.M. Gel'fand.
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the point E; conversely, any (piecewise, smooth) trajectory defines

some system (Q,.1). The stability or instability of system (0.1) is

only determined by the monodromy matrix, i.e. the end of the trajec-

tory X(t). All strongly stable ends X(1) lie in the regions Ol8and

--, and all unstable ends X(i) in the region + - . The common

-boundaries of these regions (the "cones" r+ and r-) consist of matrices

for which the multipliers of the first and second kind coincide (for

k = l,this can only-happen at the points p = 1 and p = -1). The set

of strongly stable (strongly unstable) trajectories X.(t) decomposes

into classes of trajectories which can'be deformed into one another-

continuously without displacing the end from the corresponding region

+,- (or o+,' I). These trajectories form the stability and in-

stability regions in the functional space 'I= {H(t)}.

Our problem will be to clarify the analogous picture in the

case k > 1. We note once more that the structure of the stability

regions has been studied in [71. In Ref. 7, it was also shown that

in the general case the group llis "similar" to the interior of

a torus, it is homeomorphic to the topological product of the circle

with the.connected and simply connected topological space.

The difficulties which arise when the set of unstable systems

(0.1) is studied are the following. In the stable case, the mono-

dromy matrix is always reduced to diagonal form; in the unstable /318

case, the monodromy matrix may have a complex canonical structure.

We will consider, as was done in Ref. 7, the curves in the group

$! and the deformations of these curves. In the unstable case, the

canonical structure of the monodromy matrices along such curves can

change in a variety of ways. This makes all proofs extremely com-

plex and forces us, in contrast to Ref. 7, to develop a certain formal

apparatus. In particular, we will introduce the topological space

I, in which, roughly speaking, the point C is the set of all eigen-

values of the matrix X (taking into consideration the kind of eigen-

value), and we will determine the properties of the mapping C = C(X).

The main problem which we will solve in this article is as

follows. Let a.!I be some region in E,^ t its image in i , andiri4
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a set of matrices H(t) for which Eq. (0.1) has a monodromy matrix

in A|. We must clarify the structure of the sets ~) and ' . We

will show that i\ is always a domain, and W| decomposes into a

finite or countable number of regions which depend on certain proper-

ties of the set Al (see below, Theorem 4.2, Par. 4). In other

words, our main problem will be the study of the structure of the,

set of systems (0.1), whose multipliers have certain given properties.

1. Fundamental Definitions and Lemmas

1. We denote by f = (H(t)} the linear space of matrices in

(0.1), with norm SilH(t)[idt, by Tithe set of matrices H(t) which

correspond to the strongly unstable systems (0.l),by O, the set of
matrices H(t) which correspond to the strongly stable systems (0.1),
and by 0 , -their common boundary.

O]and YlIare open sets and s = O U roU Ke.|

Let X(t), 0 < t < 1 be the trajectory in the group of real

simpl~ectic matrices 0,iwhich begins at E, X(O) = E, which has the

property that dX/dt is a piecewise. continuous function of t. The

set of all such-' trajectories will be denoted by 3(t).\

To each matrix H(t)-S\ corresponds the matricant X(t)E@(t)l of

the equation (0.1). The converse proposition is also valid ([7],

:,Lemma 1, p. 12). This correspondence will be a homeomorphismfiif;:in the

set e(it distance is defined according to the formula

r (X, X2) = I X (t) - X2 (t) 1I dt + , d_ dI I 2dt

(see, for example, [12], p. 38-39).

Sets corresponding in @(t)l to the sets 0, .K, r,,o will be denoted

by the same letters.

It follows from Par. V in the introduction that only the end

of the trajectory X(1)E'E/ determines whether X(t) belongs to the

sets 0, R, PI\0. The corresponding sets in 'O1 will be denoted by /319

a,. i ],X (see also the table below). Thus,X(t)Cc4, if X(l) ,

etc.

8



Let Pl, '*', Pk be the eigenvalues of the first kind of the
-1 -1matrix . Then the numbers pl , ',' ' pk will be its eigen-

values'of the second kind.

The symbol C = C(X) will denote the set of all eigenvalues of

the matrix X taking into account their -kind. . The set

of all similar C will be denoted by E. In other words, an element C

of the set Z is the set of 2k complex numbers P1l,'' Pk (multi-

pliers of the first kind) and pl pl (multipliers of the
1 '

second kind) which satisfy the conditions:

1) 0 < Ipjl < 1 (for multipliers of the first kind);

2) if pj is a multiplier of the first kind in C andlpjl < 1,

then also p'Er.

Thus, on the intervals (-1, 0) and (0, 1) of the real axis and

on the unit circle, the multipliers of the first kind can be in

arbitrary positions, but in the region Ipl<l,iJp*Othey are symmetric

with respect to the real axis.

We will write:

...(P1 ** * Ph *. ...P )

entering first multipliers of the first kind, and then multipliers

of the second kind. The order in which the multipliers of the first

kind are written is immaterial: The elements

d= (Pl., *XPh; (P1) . ,i(P) and C2 = p;, (p) ',' * (PY) I
are considered identical if a substitution

( 1, 2,...,k 

exists, such that pi=ps (i=1,2 ...,k).

We introduce a natural topology in E: an e-neighborhood of the

point W= lp *P,"-'vPh";} -i: will be the set of"a'll =(P, uch that
,P'-Pi<l' where sl, ..., sk is an arbitrary permutation of the

numbers 1, ..., k. Z becomes then a topological space.

9



From the "identity" multipliers of the first (and consequently

the second) kind which were introduced above, w- >ive the following:

If C(t)={Pl(t),...,Pk(t);...},0,t<l is a closed -curve in the space l,the

Pj(t) are not necessarily closed curves in the complex plane. Only

Pji(l)=Ps(0)l will hold where sl, ..., sk is a permutation of the

numbers 1, ..., k. We must adopt a definition of the symbol C,

i.e., have "identity" multipliers of one kind, such that if the

matrix X describes a closed curve in the group G!, then in general /320

its eigenvalues do not describe closed curves in the complex plane.

We will adopt the following notation. Let Hli be a set in s .
The set of corresponding monodromy matrices will be denoted by ?t~

'!IC (S . The corresponding set in Z will be denoted byte, =C(j).[

In addition to the, sets ,:.,l o,. , C , we will consider the

sets ia,Ia, ImIa, a> 0,lcorresponding to the systems (0.1), whose solutions

satisfy the bound (0.2), i.e. whose multipliers lie in the interior

of the circle with radius ea, and the sets Ma, Ma, M,,corresponding

to the systems (0.1), for which at least one multiplier lies outside

the circle of radius ea > 1 (the solutions of these systems do not

satisfy the bound (0.2)).

We summarize the notation which was introduced in the table:

I - ,

[ ___All multipliers lie on the unit
circle and there are no repeated

.0 I *multipliers of different kinds
(strong stability).

I Multipliers exist which do not lie
on the unit circle (strong instability

All multipliers lie on the unit

J pliers of different kinds.
r r I 1 , I 'l Among the multipliers, there arerepeated multipliers of different

kinds.

[Table continued on following page.]
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All multipliers lie in the interior
ma ma: a.. *, of the circle with radius ea > 1

(bound (0.2) holds)

M, M M Among the multipliers, there are
multipliers which lie in the exterior
of the circle with radius ea >i
(estimate'(0.2) does n6t)hold

This table also contains the set r(r, F), which we will encounter
below.

2. Below, we will need certain comparatively sophisticated

properties of the mapping C = ((X) (see Par. 2, Theorem 2.4) which

we could only prove by using a canonical decomposition of the real

simplectic matrices X. Before we state the theorem which formulates

this decomposition, we will state a theorem about the canonical de-

composition of matrices of the form IH, where I is a skew symmetric

non-singular matrix, and H is a symmetric real matrix, since this

theorem is related directly to canonical systems of the type (0.1).

Both theorems will be stated without proof, since their proofs

differ only slightly from the proofs for analogous propositions (see

A.I. Mal'tsev [13], p. 346-417).

We will consider a real simplectic spacei V' , i.e. a real

vector space of dimension 2k, with the inner product /321

( , ) = (Gx, y) gjX

where G = II gij II is a non-singular real skew symmetric matrix.

The operators K, whose matrices have, in the given basis, the

form
K = G 1H

where HT = H is a real symmetric matrix, are skew symmetric operators

in the space 0:'

Kx,y) =(Hx,)=- x,Ky)>

11



Below, we will always denote by Q (a) the Jordan form:

c eO 0...O
0 a c 0...0
OO a e...0

Qg (a) =
0'00...0

000 0... 

Theorem 1.1.10. The elementary-divisors of the matrix G H-XE

may be of four different types:

I) elementary divisors of the form X2 m,

II) the pairs ,(--XO)"', (X+-Xo)' with X0 real,

III) the pairs (X + i), (X-_ ic?)m ; _Ot

IV) the fourtuples(+ifiP)m, c0, hi (m is an integer,

¢, a, B are real numbers).

20. To each elementary divisor of type I) or to the pairs of

elementary divisors of type II), III) or a fourtuple of the form IV)

corresponds a certain subspace which is invariant with respect to

the operator K. All these subspaces are orthogonal and nondegenerate un-

-der the metric <x, y>. The entire space -Ican be decomposed.into U , Au

the direct sum of these subspaces.

30. In each subspace Eii , a basis can be chosen, in which the

matrix Kj of the operator K and the Gramm matrix Gj have the follow-

ing form:
0 0.. 00 -1
0 0 .... 01.0

I) K1 =Q,(0), G= 0
o-I ...--1 0 0

0 --1... 00 0

) Q (X )) , 
0 -Q (No) (-E 

respectively, where the sign for Gj can be chosen arbitrarily; /322

I) Q ( ))0 , ... o

' E'() o -N Ov

12



so = 1 or -1, which is determined by the properties of the operator

K. By selecting appropriately the sign of 4, we can have s0 = 1

IN O Q. (a) PE (0 E)

IV) Jl= -- ') where (- pE Q,(G) )

(here, P, E are matrices of order 2m, Kj, Gj are matrices of order 4m).

To a change of basis

I

(S =II sij.l is an arbitrary non-singular real matrix) corresponds

a transformation of the Gramm matrix G = II <ei,ej>11 and the matrix

of the operator K:

G1 = TTGT, K1 = T-1KT

where T = ST. Therefore, Theorem 1.1 can be stated as follows:

There exists a real non-singular matrix T, such that the matrices

T-1G- 1 HT and TTGT can be --factored into matrices Kj, Gj having

the form shown above:

T-1G-lH T= I( K2 ...

T T GT= G1 G2 ...

dx
If the system d G-'Hx,

dt

where G, H are real, det G # O, GT = -G, H = H, is a canonical

system, .heorem 1.1 states that such system with constant coefficients

can be reduced by the appropriate transformation

x = Ty

with a real non-singular matrix T to a system which can be decom-

posed into a number of canonical systems

dtY= KjYj I= G H,dt '

13



where the matrices K. and G. have the form which was stated in the
J 3

theorem. In particular, system (0.1) with constant coefficients

can be transformed in this manner (for system (0o.1), G = I-1 = -I).

We will associate with a subspace of type III) the elemen- /323

tary divisors ,()-?) , if 0 =1, and-(ii)" if E = -1 and

$ > 0. The system of elementary divisors in which the elementary

divisors (±ii))m/, > 0 have a definite sign, will be referred to

as the system of elementary divisors, for which the sign is defined

(see A.I. Mal'tsev [13], Par. 4). Thus, the structure of the can-

onical decomposition of the matrix G 1 H is completely determined by

the system of elementary divisors for which the sign has been defined.

The operator X is said to be symplectic if for all a,b(. E

(Xa, Xb)=(a, b). 

The matrix X of the symplectic operator in a basis where G is the

Gramm matrix which satisfies the relation

XTGX = G (1.1)

is called G-orthogonal.3 In particular, if G = I = -I, this

relation becomes

XT IX = I

i.e. X is a simplectic or I-orthogonal matrix, XE I./

G71 HIt can be easily verified that the matrices +e satisfy the

relation (1.1), if H T = H.

Theorem 1.2.10. The matrices of the symplectic operators can

have four_types of elementary divisors:

I) (o )2 'or (+1)2(',

II) the pairs (A - -po,)m (A-'o=!;
]

with p0 real,

III) the pairs '(k -ei' )m , (X + e'i)'n;A

IV) the fourtuples r(kcte'y)" l, (k- r-le±i)m (m is an integer, ~,

r > 0 are real numbers).

14
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2° To each elementary divisor of type I) or pairs of ele-

mentary divisors of type II), III) or each fourtupIe,K, of type IV)

corresponds a subspace which is invariant with respect to the

operator X. All these subspaces are orthogonal and nondegenerate un-

der the metric <x, y> . The entire space "jcan be decomposed into

a direct sum of these subspaces.

30. In each subspace /ji, a basis can be selected in which

the matrix Xj of the operator X and the Gramm matrix Gj have,

respectively, the form:
/3224

·0 0 ... 00 -1 /2
O 0... 01 0

lJ) X- c _ 0... - -1 0 0O

0 -. ... 0 L 1 o -... oo oiI I1 0... 0 0J

(a plus corresponds to the elementary divisor (X - 1)m and a minus

to the elementary divisor (X + 1 )m;);

K1

II) Xi= sign % .: e

where

(\= O _ - QE () In: (= ) - E O

where the sign of Gj can be chosen arbitrarily;

III) *X. = exp -0QE (Y)\ /cos Q. (p) -sin Q. (Y)'

I l Q ((P). 0 , ° \sin Q ((P) cos Q' ((P)J

GJE/O N0 ... O 
Gj= (o- N) N(= ,

I, ... 0 0

EO = 1 which is determined by the property of the transformation X.

By selecting the sign of p appropriately, we can have S = 1,

IV) xj=i 0,, :p= Q,(a) -(PE , oj= i' = E 
\eo c0 pE Q( (a)-EE

a- In r,
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and the sign of Gj can be chosen arbitrarily.

It follows from Theorem 1.2, as before, that for any symplectic

matrix X a real matrix T can be found such that the matrices T -1XT

and TTGT factor simultaneously into the- matrices Xj, G of

the-form given above:

T-1XT = X1 o X2X x3 .

TVOT= GiD G2E CG3 |

In particular, if the matrix X is reduced to diagonal form,

this decomposition has the form:

T-1XT l= 1 CD e2() ) "' 

TO = -
E

, .

Here, we wrote out the three possible factors and /325

/ ==I C oel s s-- I CD' .(I-,(O } ),e'~- (COS' . , E2( 1- /
0) \sin ?P cos I 

To the factor eI2p corresponds an eigenvalue of the first kind ei f

and an eigenvalue of the second kind e i if 0 -= 1, and vice versa

if eo = -1. Therefore, if in decomposition (1.2) we denote by 4
the argument of the multiplier of the first kind, then c0 = 1.

Remark. If we embed 0- in a complex vector space, then the

subspace of type III) can be decomposed into the direct sum of two

complex cyclic subspaces which correspond to the eigenvalues ei $

and e - i . In the first subspace, we can select a basis whose co-

ordinate matrix has the form ( (E)(each column defines the coordi-

nates of the vector. This basis is not cyclic but it is convenient

in the sense that

Qv)o E (-E)IQ (9)

16



The Gramm matrix of the form 7(lx, )=(G-1 A,) has in this basis
£i

the form:

1 '. · = 2%oN.
- iE . O - iE

Let us denote by m the dimension of the subspace under considera-

tion (the dimension of the matrix N). If m = 2m1 is even, then N has

m1 eigenvalues which are equal to 1 and m1 eigenvalues which are equal

to -1. Thus, in this case, regardless of E0 ,ml eigenvalues of the

first kind and m eigenvalues of the second kind will coincide at

the point p = e i . The same holds also for the point p = e i

except that the corresponding coordinate matrix has the form (EE). 1

If m = 2ml + 1 is odd, N has m1 + 1 eigenvalues which are equal

to 1, and m1 eigenvalues which are equal to -1. Thus, in this case,

when so = 1, m1 + 1 eigenvalues of the first kind and m1 eigenvalues

of the second kind coincide at the point p = ei . Conversely, at

the point p = e- if m1 + 1 eigenvalues of the second kind and m1

eigenvalues of the first kind coincide. The converse is true when

so = -1.

We will prove that by chocing appropriately the sign of $ we

can always have e
0

= 1. In fact, if c
O

= -1, we must make a change

of basis in the subspace of type III), which leads to the transf or-

mations

T0 e p (Q). - =ex ()}· /326
T

-
' . exp ( o 0)

Q () O Q((P) O
°N TN ° ) N

T
'
z . T ·

It suffices if we take E E)

17



We will state certain corollaries of Theorem 1.2.

1. To each EJ corresponds a matrix xsuch that X = (X).

For X, we can always take a matrix which was reduced to diagonal

form.

We denote the right members of the decompositions (1.2) by X'

and G'. For the given A, we select the corresponding matrix X'.

We must prove that for an appropriate choice of the matrix T the

matrix X = TX'T 1 will belong to ~l . No matter what the real non-

singular skew symmetric matrices G' and G", we can always find a

real non-singular matrix T, such that G" = TTG'T. The latter follows

from the fact that all spaces of the same dimension with a non-

singular skew symmetric metric which have the same field for the

coefficients are isomorphic. (See A.I. Mal'tsev [13], p. 349).

Therefore, we can find a non-singular real matrix T such that TI-1T =

= G'. Since the matrix X' is G'-orthogonal, X'TG'X' = G', the matrix

X will be I l-orthogonal, i.e. X.E01, and by construction C(X) = C.

2. The group 3:lis connected.

This statement is proved simply in [7], but it can also be

derived from the canonical decomposition. In fact, every matrix Xj

can be connected continuously with the unit matrix without changing

its structure. Then the matrix T 1XT, and consequently also X are

connected continuously with the unit matrix. This means that the

group T is connected.

In the work of I.M. Gel'fand and V.B. Lidskiy [7], the important

concept of an argument of a simplectic matrix was introduced.4

4We will state this definition for the convenience of the reader. Any
real non-singular matrix X can be represented in the form X = SU, where
S is a real symmetric positive-definite matrix, and U is an orthogonal
matrix. If X is a simplectic matrix, the matrices S and U will also
be simplectic. An orthogonal simplectic matrix U of order 2k can be
written in the form u - u2)

U 2 ul

where ul, u2 are matrices of order k. The matrix w = u + iu2 is
unitary, w.w* = Ek. Therefore, Idet wi = 1, det w = eii. The
number 4 is called the argument of the simplectic matrix X [7].

18



We will call the argument of =_{p!, ... Pk; Pi ,pI}) the sum /327

of the arguments of the multipliers of the first kind:

* tIA

In exactly the same way, the argument of the simplectic matrix X

will be the sum of the arguments of its eigenvalues of the first

kind. Thus,

ArgX = ArgC(X)

Below (Par. 2, Theorem 2.1) we will prove, without using the

concept of an argument, that C(X) is a continuous function of X.

Thus, if X(t) is a continuous curve in the group i , we can re-

number the multipliers of the first kind pj(t) so that pj(t) will

be continuous functions. Thus, even though ArgX is a multivalued

function,

ArgX =(ArgX)O+ 2-nl (mn = 0, ±, 12, .... ) (1.3)

th.e increment in the argument

IArgX(t) l - ArgX(1)- ArgX (XO

along any continuous curve is determined uniquely.

It follows from (1.3) that the increment in the argument along

the closed curve X(t), 0 4 t 4 1 is a multiple :6f 27r:

ArgX(1t)o= =2=n (tn=0, ± 1, ± 2, .. )

Theorem 1.3. A necessary and sufficient condition that the

curves Xl(t) and X2 (t), 0 - t < 1 with common endpoints in the

group be deformed5 into one another without displacing the ends is:

5A deformation of the curve Xl(t) into the curve X2(t), 0 < t 4 1 is
a matrix of functions X(t,s), 0 < t,s < 1 which is continuous over the
set t, s such that X(t,O) = Xl(t,l) = X2(t). Curves which have common
endpoints and which can be deformed continuously one into another
without displacing the endpoints will be called homotopic.
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Arg X1 (t) ~ = Arg X3 (1..4)

In particular, the closed curve X(t), 0 -< t 4 1 can be contracted

into a point if and only if ArgX(t!=_O. 0.

This statement was proved in the work of I.M. Gel'fand and

V.B. Lidskiy [7] for the argument which was introduced in this

paper. We denote by ArgOX the argument of the symplectic matrix X

as defined in Ref. 7.6 It suffices to show that equality (1.4)

is equivalent to the equality

Argo X, (t) o = ArgoX 2 (t) 0. (1.5)

Let X
1

(0) = X2 (O) = X',-X 1 (1) = X2 (1) = X", X'pX" is the curve

Xl(t) and X'qX" is the curve X2 (t) (see Fig. 2). We denote by /328

,_U' 0 ['jti X(t), 0 t ,< 1 the curve X'pX"qX'

2I0 I> X
1
(2t) l for 2 t<-,

X (t)-rytJ X 2 (121) for Bt
I (: J~ltl Xe(l-7 t~ for -2t<l

The change in the argument

Fig. 2. along the curve X(t) is a multi-Fig. 2.
ple of 2wr. Let

Argo X (t) Io = 2inz.I (1.6)

For any m closed curves U (m)(t), 0 < t 4 1 exist, such that

Arg U()(t)lo = Argo U( "' ) (t) f=.2r, (1.7)

In fact, this condition is satisfied, for example, for the

curve ([7], p. 27):

[See following page.]

6I.e., $ = Arg0 X (see reference on previous page).
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cos 2grt - sin 2rmt 
1 0

0 1 0

1 0 0

Y('")(t)= .,t=
sin a2mt cos 2 mt (1.8)

_0 0 01

(the empty entries have zeros).

We select an arbitrary point U0 = U(m)(t
0
) and we connect it by

. the curve U rX' with the point X' (this is possible, since the group

is connected).

We denote by V(t), 0 < t < 1 the closed curve U0 rX'pX"qX'rU0

(see Fig. 2). Clearly,

"Argo V (t) = Argg X (1t) l = 2im. 

Thus, Arg'(tArg and the curves (t) and V(t) are
homotopic. Since for a continuous deformation with fixed endpoints,

the increment in the argument (Arg) does not change,

Arg V (t) -- Arg U(')(t) 

According to (1.7), ArgV(t) = 2wm. Since ,ArgX(t),i[=ArgV(t)

Arg X (t) io= 2=ln. (1.9)

If condition (1.4) is satisfied, m = 0 in formula (1.9), and

(1.5) follows from (1.6). This means that the curves can be deformed

continuously into one another without displacing the endpoints. /329

If (1.4) is not satisfied, then in formula (1.9), and consequently

in (1.6) m g 0, i.e. (1.5) is not satisified and the deformation

can not be carried out. This proves the theorem.7

NWe note that in addition to the usual properties of ArgX we used in
this proof only equality (1.7). Therefore, ArgX can be defined in
many ways which are equivalent in the sense that each definition
will satisfy Theorem (1.3).

21



2. Properties of the Mapping C = C(X)

Theorem 2.1. The mapping C = C(X) is continuous.8

Proof. We select an arbitrary matrix X0,E and we let

C (XQ) =_C-o (P1, * *, Pk; Pi , * Pk

We enclose all pj, IPj1 X 1 by circles yj with radii which are

so small that they do not intersect one another and the unit circle.

All pj on the unit circle are enclosed by circles which do not

intersect with the circles which were drawn earlier and with one

another. Let p0 be a value of pj and y0 be the corresponding circle.

If the matrix X is sufficiently close to X0, then the number of

eigenvalues of the matrix X in the interior of y0 will be equal to

the multiplicity of p0. Suppose that IPOI = 1, and that m1 multi-

pliers of the first kind and m2 multipliers of the second kind

coincided at the point p0. We must prove that for the matrices X

which are sufficiently close to X0 there will also be m1 multipliers

of the first kind and m2 multipliers of the second kind in the

interior of y0.

We denote by P0 the projection matrix of thesubspac)plof roots

of the matrix X0 and by P the projection matrix of the subspace which

is the union of ther.root subspaces rPl1 of the eigenvalues r';fo lof--the

matrix X. If the matrix X is sufficiently close to X0, the matrix

P is also close to P0 (see Introduction, formula (0.4)). Then the

number of positive and negative eigenvalues of the matrices (l/i)IP0
and (l/i)IP coincides, and is equal to, respectively, m1 and m 2.

This means that among the eigenvalues P.E^ofthere are exactly m1 of

the first kind and m2 of the second kind. The analogous statement

is obvious for the eigenvalues which do not lie on the unit circle.

Thus, for a sufficiently small neighborhood 0OC (a certain set of

circles which were constructed), and consequently also for any

22
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functions of X. We must prove, roughly speaking, that the types of
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neighborhood 0 of the point o0, we can find a neighborhood Ox of
CO0

the point XO(@,, such that (OxY)c2OG , which proves the theorem.

Theorem 2.2. The set of matrices'k SEsatisfying Eq. C(X) = Co

is connected in the group ~i·. 9

Proof. Let ((X1) = 5(X 2 ) = 50. We will show that a continu- /330

ous curve X(t), 0 < t ~ 1 exists which connects X
1
and X2, which

has the property that C('X(t)i = 0o.

1. Both matrices X1 and X
2
are reduced to diagonal form. Since

for the matrices X
1
and X2 the systems of eigenvalues a n d

their kind coincide, in the canonical decomposition (1.2) the right

members coincide for the matrices X1 and X
2.

(With the condition

that in (1.2) c denotes. the argument of a multiplier of the first

- I

kind; then = 0 1 and the matrix G I) Thus,

~TT X 1 TI- Ta'X 2 T2, T-'T 1 T2-'T 2 .

Letting U = T1T2I, we have:1 0

X2 = U-'X1U, U'IU =I.1)

The second relation shows that U is a simplectic matrix\,UtQ \

Let X
1
and X

2
be arbitrary srmplectic matrices which satisfy

relation (2.1). We will show that the eigenvalues a n d

their kind coincide for the matrices X1 and X2.

9Here and below, connectedness is defined in the "narrow" sense:
A set is said to be connected if any two points in E ,,jj can be
connected in ?3 \ by a continuous curve.
1 0We also note that from Theorem (1.2) using the same arguments from
which (2.1) was obtained, we can derive the following proposition:
A necessary and sufficient condition that X2 = U-lX1U, where X], X2,
U are simplectic matrices is that the systems of elementary divisors
whose signs have been determined coincide for the matrices X1 and X2.
.Ananalogous statement can be found in [13], p. 416.) It is easily
seen that Theorem (1.2) can also be derived from this statement.
In the subsequent proof, this theorem must be proved first. The
same applies also to Theorem(1.l).
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This is obvious for the eigenvalues p, Ipj Z 1. Let p be

a simple eigenvalue of the matrix X1, IpI = 1 and Xla = pa. We

introduce the notation

b = Ua

Then, from (2.1), we have

X.b ,pb| and _~ (lIb, b) =(la, a), 1

from which our statement follows.

We will now assume that p is an eigenvalue of thejmatrix X1
of multiplicity greater than one, Ipl = 1, where ;i(pA is the cor-

responding subspace of roots and al, a 2, ..., am is a basis in

the subspace. Then it follows from (2.1) that jp--_~u is the root

subspace for the eigenvalue p of the matrix X
2
. If we take as the

basis in .ljthe vectors bj = Uaj, j = 1, 2, ..., m) we obtain the

result that the Gramm matrices of the quadratic form (l/i)(Ix,x)

coincide in the subspaces ZP and =~:

-(Iay, ah) L (Ib1, b,) (, h= 1,2 

Thu's, these matrices have the same number of positive and negative /331

eigenvalues. This means that the same number of eigenvalues of the

first and second kind of the matrices X
1
and X

2
coincided at the

point p.

We prove that for arbitrary x1, x,. (2.1) implies C(X1) =

=(X
2 ).

Let again X1 and X2 be given matrices. Since ~Iis a connected

set, there exists a curve U(t)(®, Ot ,l1which connects the matrix U

with the unit matrix E. Then, as the first relation in (2.1) im-

plies, the curve X(t) -= U(tfX1U(t) will connect the matrices X
1

and X
2

in the group $'l. Since the relations

x (t) U (t)-XIU (ty) U (t)U(t) ,

are satisfied, which are analogous to the relations (2.1), we have,

in accordance with what was proved above, the result that the
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eigenvalues together with their kind, coincide for the matrices

X
1

and X(t):

Ix M(t)l =(XI)= \.

2)At least one of the matrices X1 and X2 is not reduced to

diagonal form. In this case, the statement of the theorem follows

immediately from the fact that any matrix E@' can be connected'by a
continuous !curve 'which:remains' -the set -('X) = 50 with a matrix

which is reduced to diagonal form. In fact, to do this in the

canonical decomposition given by Theorem 1.2, in all matrices

IQ-(), Q(), Q(X0)' QE(O) E must be connected continuously with zero.

This proves Theorem 2.2.

An important point in Theorem 2.2 is that C(X) denotes the set

of eigenvalues taking into account their kind. Thus, if X1 and X
2

have the same eigenvalues (or even the same Jordan form), then

generally X1 and X2 cannot be !connected in the group _I without

shifting the eigenvalues. Let us consider, for example, the similar

matrices of order two X eI $
and X2 = e < Let

X(t) be a continuous curve with the same eigenvalues, i.e. X(t) =

= R(t)eI~R(t)1- , such that X(O) = eI , X(1) = e I. Since R(t) is

a matrix whose columns are the real and imaginary parts of the eigen-

vector of the matrix X(t),-we can choose an R(t) which depends con-

tinuously on t. In addition to this, clearly det R (t) $ 0. For

t = 0, we have: eI $ = R(O)eI R(O0)- 1, and since e
I

= Ecos$ + Isinq,

R(O)I = IR(O), from which we easily obtain R(O)'> 0. Hence,

det R (1) > 0. For t = 1, e- I f = R(l)e IR(1)- 1, R(1)I + IR(1) = 0,

which implies that det R(1) < 0. The contradiction which was

obtained shows that the matrices eI $ and e-
I $ cannot be connected

by a curve of the type described above. However, this does not

contradict Theorem 2.2, since the eigenvalues e 
i

of the first kind /332

of the matrix e and e-I of the matrix e-I do not coincide,
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i.e. (e-

The main purpose of this section is to prove that not only the

complete image of a point but also the complete image of any region

(of an open connected set) is a connected set. First, we introduce

the following definition.

Definition. The mapping x' = C(x) of the topological space

R = {x} onto the topological space R' = {x'} is called weakly open

at the point x6 if a point x0 EiR, (X,)=/x can be found such that for

any neighborhood Ox0 of the point there exists a neighborhood Oxt of

the point xI such that Ox cz(Oo)' l

A mapping which is weakly open at each point Ao6R'f is said to

be simply weakly open.

This definition is an extension l of the usual definition of

an open mapping (the mapping x' = C(x) is open if for any point!XoV(R/

and its neighborhood Ox there exists .a neighborhood Oxt of the

point xI = C(x5) such that OxcC(OOi!f ). An open mapping is of

course weakly open. The following example will show that the con-

verse proposition is not true.

Let R = {~, n} be a plane, R' the set of points which lie on

the coordinate axes, E = 0 and rn = 0 in R, with real neighborhoods

which are defined. We plot in the plane R the set of curves

2 - 4a, . <a l . To each point x0 = (0<; n0 ) in R, we

make correspond the point Xo"R'cR, which is obtained when the line

2 _ = --~1 is intersected. It is easily seen that for any

point x0 which lies on the bisectrices of the coordinate angles

which is different from the coordinate origin, for a "sufficiently

small" neighborhood 0Ox, a neighborhood Oqx does, not exist such

that!rO c(O~ . Thus, this mapping is not open. However, as can

be easily seen, it is weakly open (we must take x0 = xt).

Lemma 1. Let R = {xl be a locally connected topological spacel2

1 2 We recall the definition. A locally connected topological space
is a space in which, for every point x0 and the neighborhood 00,
there exists a neighborhood 0 C 00 which is a connected set. Con-
nectedness is defined in the same sense as before.
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R' = {x'} be a topological space and x' = C(x) be a continuous, weak-

ly open mapping of R onto R' such that the complete image of any

point xIoERf' is a connected set in R. Then the complete image

of any domain in R' will be a domain in R.

Proof. Let G' be a domain in R' and G be the complete image of

G'. G is an open set, so that C(x) is a continuous mapping. Suppose

that G is not connected. Suppose that the points x1 and x
2
cannot

be connected by a continuous curve in G. We denote by G1 the con-

necting component of the set G containing xl, i.e. the set of all /333

ixG, | which can be connected with x1 by curves which lie in G.

Since R is locally connected, G1 is an open set, i.e. G1 is a

*-domain*. Let G
2

= GXG1. Then because it is locally connected, the "

set G
2

is also open.

We introduce the notation

xi(xi), x.(xj ,= = (G C,

We will show that the intersection GlG21 is empty. Let us

assume that the proposition is not true. Then there exists:

uE G,,llzE G2: such that l �(,) )' Gin G-l . By definition

the set of all y in R such that C(y) = y' is connected. Therefore,

Yl and Y2 can be connected by a continuous cyrve in this set which

is contained completely in G. But then the point Y2 belongs to G1.

Hence, the contradiction shows that G, n GI is empty.1 3 It follows

that Gj is the complete inverse image of G! (j = 1, 2). Since the
3 J

sets G. are open and the image x' = C(x) is weakly open, the G!
3 J

(j = 1, 2) are also open. We will show that G' is not connected.

We select arbitrary :zEGzGIG, zi and we assume that z' = f(t),

0 < t < 1 is a continuous curve connecting the points zl and z2 in

G'. We denote by A the class of all tE[Ol ]such that for all t' < t

Gi,')GB , I-[O A . The sets A and B are not empty. In fact,

sincej E (0)G, j(i) Gi, G, 2 G 1 and GI are open and f(t) is a
TOO, 2 2 .. 
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continuous function, all t sufficiently close to zero belong to the

set A, and all t sufficiently close to one belong to the set B. If

tA . .t2EBI , then tl < t2. Therefore, (k; B) is aDedekind "
cut. Let t be the corresponding number 0 < t0 < 1. By'definition

of't0 in any neighborhood of the point [illegible] = f(t0), there

are points belonging to G1 and GI. Since GI and GI are open, and

do not intersect, zc belongs either to G1 or to GI which is

not possible. Hence, G' is not connected.

Thus, assuming that G is not connected, we obtained the result

that G' is not connected. Consequently, G is connected, which proves

Lemma 1.

Of course, Lemma 1 remains valid if we require that [illegible] =

((x) be an open mapping. However the mapping 5 = C(X) under con-

sideration is not open at the points XE,\ which correspond to the

canonical matrices for the eigenvalues which are equal to one in

absolute value. (At all other points, it can be shown; that this

mapping is open.) This is easily shown for the case k = 1.

Let ' 
( ) C(XO) D , 

. I

The matrix XI "lies" on the cone r+ with center at the point E in /3 3 4

the torus ~| (see Fig. 1). Consequently, either "unstable" or

"stable" matrices are close to it for which the multipliers are

arranged in a certain fashion, for example, for which the multiplier

of the first kind lies on the upper semicircle (depending on the

sign of E). But C t{eP; e-i)} can be close to the point'Co~0E

both for $ > 0 (multiplier of the first kind on the upper semi-

circle), and for $ < 0 (multiplier of the first kind on the lower

semicircle). Thus, at the point X0 the mapping C = C(X) is not open.

We note that the statement of Lemma 1 is not valid if we dis-

regard the requirement that the mapping x' = ((x)-be weakly open.

Thus, for example, let R be the square abcd without the side cd,

and let R' be the circle. Projecting all points of the square onto

28



[a,d) and "convoluting" the half-open interval [a,d) into the

circle, we obtain a continuous mapping x' = M(x) (which is not

weakly open) such that the complete image of any point ,xER' 1
is

a connected set. However, the statement of Lemma 1 is not valid.

Theorem 2.3. The mapping C = C(X) is weakly open.

Proof.. We will consider an arbitrary E/ .. We will first

assume that C0 does not have repeated multipliers on the unit circle

and on the real axis. Suppose

' Co(ei re-i ', ei, e I, e .. ; r-le-i, (2.2)

(first we write out the multipliers of the first kind). To the

element C0 we make correspond the canonical decomposition

i r-1x'o
r =

re- * 0)
T1 X0 T=~ (7e 4 ri) @ (O -1) f ..ei)p'f $ (2.3)

For the matrix T, we take any matrix such that

TI-1 T=( 2) 1 2 1 12 ( 2.14)

Then the matrix X0 will be simplectic with eigenvalues equal to the

multipliers of C.' The e i 1 , ei2, .... will be the multipliers of

the first kind for the matrix X0. Thus, C(X 0) = C0.

All E which are sufficiently close to C0 have the form

.~~~~4 . 2.{r'e', re ', e', e~ .. (2.5)

To each C we make correspond the matrix X using the formula

T'XT () ( e ) ('20 .... (2.6)

T 0 - 0 _ .___ _ _ . . _ _ _ -

By virtue of (2.4) and (2.6), XfEGI and C(X) = C. The matrix X

will be arbitrarily close to X0, if the numbers p', r', ', ' .

are sufficiently close to the numbers , r, , 1' .... Hence, /335

for any neighborhood OX0 we can find a neighborhood 0O0, such that

'I:o ' 0
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We will now assume that C0 has repeated multipliers on the unit

circle or on the real axis. The matrix X,C,0 will again be defined

by formulas (2.3), (2.4). However, now C in any arbitrarily small

neighborhood of i0 can have a form which is different from (2.5).

We will consider three cases:

1) for C0 the multipliers coincide at the points p-io=±i i. -,

2) pO = ±1

3) the multipliers coincide at the points po = v, p on the

real axis.

Of course, it is possible that for 50 different cases can occur

for different multipliers; and several multipliers may exist for

which the same case occurs.

Suppose that m1 multipliers of the first kind and m2 lmulti-

pliers of the second kind coincided at the point po = e o.

In the first case, to each fourtuple of multipliers (two of

the first kind and two of the second kind) for Co0 t , .. ,'

],···e l

-may correspond a fourtuple of multipliers for C which do not lie on

the unit circle:

re1', re - r e....7)

In the second case, in addition to this, to each pair p= 1, p0 = 1

of multipliers of the first and second kind for the element C0

o= { ,..., 1 ... ; ..... 1, .}

may correspond the pairs p, -1 for the element C,

C { .; · - (2.8)
+ +

and similarly in the case po = p0 = -1.

In the third case, the C which have the form

At . . . trei'°, rei -le-L r-'e'~.[
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may be close to the element r0

To the multipliers %0 and r which have the form (2.2) and (2.5),
we make again correspond the factors in the right member of the de-

composition (2.3) and (2.6). For these factors, the arguments do

not change; therefore, we will not write them out below. In the

second case, these arguments:' -. also do not change. The factors of

the matrices X0 and I 1 which correspond to the first case have

the form:

1(e. . /336
T-'XoT c:='°e ?'. ....' ) . * * / 

0 eo

It is clear from these decompositions that XEOrC(X 0)-O) . We

let T = T OSO where So=SGE-nl , and S is an orthogonal matrix of

order four which has the form

s(E2 E2)

r~f2( ' 2 12

We then obtain:

;e TIX^o-S )o . ( (l·1 0 (2.9)
To-lXTo = S* ( C- = o El (2.9)

2)(2.10)

We make correspond to the element C (2.7) the matrix X, defined by

the equation ..

T1.,'XTO - (rO r.-e.) ., (2.11)
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From a comparison of (2.10) and (2.11), it follows that Xe.! I

Here, ((X) = i, and if C is sufficiently close to C0, then r is close

to 1, p is close to $0 and the matrix X is close to X0. Thus, for

any neighborhood O a neighborhood 0 can be found such that
X0or

The matrix S can be defined as follows. The matrix must satisfy

Eqs. (2.9) and (2.10). We seek S in the form

s=(A 4B\
Substituting this expression in (2.9), with e29o=coscI,+ sin

we obtain:

IA B (I, ° (I, 0 {AB
(C D/ 0 I2 0 I2 C D

which implies that all matrices A, B, C, D commute with I2.A matrix

which commutes with I2 .has the form aE2 + bI2' .incidentally,we can sim-

ply try to find ,A,B,C,D _of this :form). T.he set.:of matrices {aE2 + bI 2 )

forms a field which is isomorphic to the field of complex numbers

{a + bi). The complex conjugate corresponds to the transposed

matrix. Making correspond the complex numbers a, B, y, 6 to the

matrices A, B, C, D, we rewrite the remaining equation in (2.10)

in the form

()(- (O 1 *(-I °)

This is equivalent to the equalities /337

[I:l--=l!, i-,'l-la!, =~* _ra

From the above, we easily obtain the general form of the matrix S

which satisfies relations (2.9) and (2.10). In particular, we can

take

2* ' -
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We then obtain a matrix S of the form shown above.

Finally, in the last, third case, we have:

.J XUo .) (2.12)
T Ti-T==I,'TD le i . I

-X---- ,(X0o)-) As before, we let T = ToSo, whereI SSEEz,1.

and S is the fourth order matrix

o0 \:' /o oil o/
i0 0\o olo 1 l

Then, from (2,;.12), we_obtain: -

To1XOTO 0 - S _:.-_ _ . (2.13)

, o X'~o-0 IO -lo-' 
;, (l0120 () £(: E2) (2.14)

'-1 - E0

To the elemigent C we mak&e 'orrespond the matrix X

To'XT' ( --lr 0 ) (2.15)

Formulas (2.14) and (2.15) imply that'X'(E!, and from a comparison

of (2.13) and (2.15) it follows that the matrix X is arbitrarily

close to X
0
if the element a is sufficiently close to CO. Thus,

also in this case, for any neighborhood OX there exists a neighbor-

hood 0O such that Ooc:C(Oxl).

14This proves Theorem 2.3.1

14The proof is laborious because of the comparatively complex canonical
structure of the matrices'-7xc~

I
. Obviously, logically it would be

simpler to. prove first the' a'nalogous theorem for the algebra of the
complex matrices K = iIH, H* = H, which are the matrices of symmetric
transformations of pseudounitary spaces which have'a s impler.: canonical
structure, and then using the Cayley transformation pass ,onto the'
group 'mof<jI-unitary complex matrices U, UU = I However and then b
virtue of _-'( derive the theorem for the group .. However, this
approach is just as long.
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The following theorem which will be used below follows from /338

Theorems 2.1, 2.2, 2.3, and Lemma 1:

Theorem 2.4. For the mapping 5 = r(X), the complete image of

any region in E is a region in

3. Structure of the Group ~

Theorem 2.4 enables us to reduce the study of the structure of

the group 6i from the point of view which interests us to a study

of the set E. We will first consider the setiOz.

Following [7], the elements 51 and Ca, E are said to be of''

the same type if when we move in the counterclockwise direction along

the unit circle from the point p = 1, the multipliers of the first

and second kind for C1 and 52 alternatein the same manner.
'

Ie.e, 1

and 12 are of the same type if a continuous curve C(t) exists which

connects C1 and 52 without intersecting r1. There are 2k possible

positions for the multipliers of the first and second kind on the

unit circle. We will denote them by ' ..., 2 k. We will denote

by the set %CEEl for one type p = pJ. Clearly, i['"(1 is ,a

domain. We denote by .', the complete image 56C')jin the group ' .

By Theorem 2.4 is also a domain.

Below we will need another property of the domains

Definition. The set IcZt1c\ is said to be singly connected in

3;, if any closed curve which lies entirely in 49!1can be contracted

into.a point in the group !|.

Clearly, a set which is singly connected in I$ need not be

connected ("into itself") (see, for example, the set ' in Fig. 3,

below).

We will show that the domains ,Oll are singly connected in

Let.:X(t), 0 < t 4 1 be a closed curve in O![) . We will number the

eigenvalues of the matrix X(t) on the upper semicircle in the order

of increasing arguments. Since eigenvalues pj(t) of different kinds

are not encountered as t varies, 0 < t < 1, every point pj(t) moves
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as 0 < t S 1 along the upper semicircle and p.(O) = p.(1). Hence,

ArgX (t)l = E Aarg p(t)O.

(the sum contains only the multipliers p of the first kind). By

Theorem 1.1, the curve X(t) can be contracted into a point.

We prove the following theorem: ,,

Theorem 3.1. The set ZcQ decomposes into 2k nonintersecting

.,singly c:onnected domains in the-:group 3, each of which. is-> ,

chadracterizedby a-certain distribution- of the mu-tipliers -o'f the --

first and- second -'ihd on the unit circle.

This theorem was proved in the work of I.M. Gel'fand and V.B.

Lidskiy ([7], Par. 6 and Par. 8, Lemma 4).by constructing actual /339

curves. For stability regions, this approach is undoubtedly simpler,

since in stability regions all matrices are reduced to diagonal form.

When the instability regions are studied, such ' curves can not be

constructed, and moreover their deformations can not be studied be-

cause along such curves the canonical structure of the matrix can

change in a very complex way (see Theorem 1.2).

We will now consider the set X . When k = 1, the set.t!;?C(5y2

decomposes into two domains m'Rand!'flwhich correspond to two ,

possible unstable types v1 and v2. By Theorem 2.4, two domains

and t ') i n t o whichi| decomposes correspond to these (see

also Fig. 1).

Theorem 3.2. For k > 1, the setu p| is connected.

Proof. Since the set'- '( is clearly open, by Theorem 2.4

it suffices if we prove that Hi/ -s connected.

Let c - . 2,. 2 .2 We connect an arbi-0-- ' 2' ' 2'

trary point 7i J with C0 by a continuous curve which iies-entirely

in

We first assume that C has multipliers on the positive real

axis. Then these can be brought to the points- p = 1/2 and p = 2.
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After this, all remaining multipliers may also be brought to these

points. In the process, we do not leave aj!, since during the de-

formation -some of the multipliers always remains': in the interior

of the unit circle. If for C there are no multipliers on the posi-

tive real axis, but there is at least one fourtuple; of multipliers

which do not lie on the unit circle and on the negative real axis,

these fourt-uples Ncan be shifted continuously onto the real positive

axis while staying in s , and the point which is obtained, as shown

above, can be connected with T0. All we must analyze now is the

case when for 5 all multipliers which are different in absolute

value from one lie on the negative real axis. If their number is

greater than four, the fourtuple-. of multipliers can be displaced

into the region IlpIl, ogpO0\ and we have the previous case.

Finally, if there are only two multipliers, the remaining multi-

pliers lie on the unit circle (k > l!). A pair of these multipliers

(of the first and second kind) can be brought to the real negative

axis and the ifourtuplewhich is obtained can be shifted to the region

pj$ 1 ;p+. Thus, we again have the preceding case.
Thus, in either case C can be connected with C0 in the region

:_ , *i.e. is connected which was to be proved.

The connectedness of the set At when k > 1 "is not convenient"

in a certain sense. In the next paragraph, we will show that the

connectedness of the set *implies the connectedness of the set

[ z|(when k > 1). At the same time, when k = 1, from the fact that

.d..] decomposes into two domains )and i , it follows that-

-"! ", decomposes into a countable number of domains y,,() v-,'Vi' /340

,,, .For each'of these domains, the following theorem [12]

is valid:

If Hl(t) • H(t) < H2(t) and the matrices Hl(t) and H2 (t) belong

to the same instability region 5Y< ((v=v v 2 n=0, ± ], ± . , then the

matrix H(t) belongs to the same instability region.

From this theorem, various efficient instability criteria can

be derived. What 'is' th'e analogue of the theorem for the unstable case
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when k > 1? The proposition which suggests itself, namely that the

theorem holds for the entire set , is immediately refuted by

simple examples. Nevertheless, it turns out that the set . can

be broken up by some "surface" r into a countable number of domains
in such a way that for some of these domains the above theorem holds.

The set r is the set of those systems(0.l) whose monodromy matrices
have repeated multipliers of different kinds (see table on p. 10).

We will consider 1 and x . We will say that Cl and

C2 have the same multiplier distribution (or simply the same type.v),
if: 1) they have the same type of multiplier distribution on the

unit circle in the sense defined earlier, 2) the multiplier pairs,

on the real positive-'axis for Cl and,: 2 have the same parity,
153) and if the same holds also for the negative real axis.

We will say that X1 and iX2, E7 have the same type of distribution

of eigenvalues if ((X1) and C(X2) are of the same type.

Theorem 3.3. The set Fr is the union of N = 2 (2 k - 1)

simply connected non-intersecting domains 11S'~i (9-l;- ,VN),'

in )® , each of which is the set of all matrices Ex'\rl. having a!

diStribution.,of.eige'nvalues of-the same type.

Proof. If we denote by Wfl the set {C} of a given type v,

then

F o r continuous deformations C, for which the multipliers of

different kinds do not coincide, only-fourtuples of multipliers can

either leave'or be brought to the real axis, but for such deformations

the type C does not change. On the other hand, it is clear that

elements C of the same type can bedeformred by such deformations into

one another. Thus, the sets 'YrI are non-intersecting domains.

By Theorem 2.4, their images, the sets,'(v )C® are also non-inter-

secting domains.
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We will show that these domains are-,simply connected in ./341

Let X(t), 0 - t < 1 be a closed curve in .?( . Along any con-

tinuous curve (not necessarily closed) for multipliers of the first

kind, outside the unit circle

Ei AArgpj l')l (3.1)

since these multipliers are distributed symmetrically relative to

the real axis. Along a closed curve for multipliers of the first

kind on the unit circle equality (3.1) also holds: This is proved

in the same way as for the domains . Thus, ArgX (t)I1'1

By Theorem 1.1, the curve X(t) can be contracted into a point, i.e.

the domains are simply' connected in

We will determine the number of different types v. All types

v will be broken up into two classes: 1) the types v for which

the elements r have an even number of multipliers on the interval

(-1, 0), 2), and types v for which the corresponding number is odd.

We will deform C by displacing the fourtuples of multipliers without,

encountering multipliers of different kinds from the region 1PI X 1

to the positive real axis. For the elements C of the first class

after such deformation, there will be 2j multipliers on the unit

circle, and the remaining multipliers will lie on the real positive

axis 0 • j < k. For the elements C of the second class, there will

be two multipliers on the negative real axis, 2j on the unit circle,

and the remaining multipliers will lie on the negative real axis

0 < j < k. Since on the unit circle the 2j multipliers of the first

and second kind can be distributed in 2j ways,, the total number of

"unstable" types v is equal to

This poves heore 1

This proves Theorem 3.3.

Theorem 3.4. The sets\ Xr. and ,,are domains for k > 1; for

k = 1, -I; Tjis a domain, and M decomposes into two non-inter-

secting domains:
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In fact, repeating the proof j'of'Theorem 3.2, we obtain the
result that the corresponding statement is also valid for the sets'

When k = 1, ',it+) is the set of elements ={,; F'},0 F <

fordT- o< 3 .1- l : T 

Theorem 3.4 follows from Theorem 2.4.

Lemma. Let i~~ be a domain in the group [,6! The arbitrary
matrices X1 and X2 from _'[ can be connected by a continuous curve

X(t), 0 < t 4 1 which lies entirely in 9sf1t, and which has the
property that dX/dt exists everywhere except possibly at a finite

number of points t 0 o'O<t1 <. . <t,nl<tm , 'an dthe derivative

dX/dt'is cont-inuous-on the intervals (tj, t j+ l). (From here on,
we will call such curves piecewise smooth.)

It follows from this lemma that any two matrices from ip can
be connected by a piecewise smooth curve.

/342

Proof. Let us connect X
1
and X2 by a continuous curve X0(t),

X0(0) = X 1 ,X0 (1) = X2. We will encircle each point X0(t) by a

neighborhood [Otlsuch that: 1) 2ltc , 2) for any two matrices

IXFX/Otf the matrix X'.(X")- 1 has no eigenvalues equal to -1.

From the set of coverings Ot we select a finite covering Ot.j Oj

(j = 1, 2, ..., q). Discarding the unnecessary neighborhoods, we

will assume that the intersections i'n°i+\ are not empty. We select

an arbitrary point lx,4.?onB +, (n=[,22,,qg- . We set XI = X

X' = X 2. We will prove our statement if in the neighborhood Ojq 3we connect the points X! and X! by a continuously .differentiable

curve.

The transformation

Y = X.(X)-

will map the neighborhood 0j into some neighborhood O of the

matrix E(i , and the matrices X! and XJ+l into the matrices E

and Y0 = X + 1 (X!)1, where any matrix Y in this neighborhood
16
This can be done since for a sufficiently small neighborhood Ot

the matrix X'·(X")-1 is arbitrarily close to the unit matrix.
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has no eigenvalues which are equal to -1. Therefore, for all

matrices in this neighborhood the Cayley transformation

'C-'-1 YE-I (3.2)
'Y-E. E+IC

is defined. Here C is a real symmetric matrix, such that det(E+IC) ¢

0 O. Conversely, any such matrix C defines in the second equation

in (3.2) the matrix YE? . The neighborhood O will be mapped

into some neighborhood 0 of the point C = 0 of /ke- -dimensional

Euclidian space of symmetric matrices. The points Y = E and Y0 will

be mapped into C = 0 and CO. Connecting the matrix CO with the

matrix C = 0 by a smooth curve which lies in 0, and making the in-

verse transformations, we obtain the required curve X(t).

Theorem 3.5. Let Xl(t) and X2(t), 0 £ t 4 1 be piecewi'se

smooth curves and let U(t, s), 0 X t,s - ltbe a deformrtionn'of:ohe

curve into the other

U(t,O) = Xl(t), U(t,l) = X2(t)

U(t,s) is a continuous function over the set t, s for 0 ~ t,s < 1.

Then a deformation V(t,s), O < t,s 4 1 of the curve Xl(t) into the

curve X2(t) exists such that:

1) V(t,s) is a differentiable function of t and s, 0 - t,s < i-, /34-

except possibly for a finite number of values of t and a finite

number of values of s; when s is fixed, V(t,s) is a piecewi-se

smooth curve.

2) The curves V(O,s) and U(O,s) and also V(l,s) and U(l,s)

are homrOtipic; If U(O,s) = U0 = const, then V(O,s) = UO, if

U(l,s) = U1 = const, then also V(l,s) = U1.

Proof. Let

.o all X Y ti

over all X,':Y \esatisfying the condition

det(X + Y) = 0
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Since for XC 7det X = 1, clearly co > 0. We select an 0:0. F>- ° ;

s,uch that for

1 I.t-t.'_i+js-s'j<O

Uil (t', s') -U (t, s)Ii e.

We break up the square 0 4 s,t d 1 by the lines t = tj, s = sk

parallel to the axes t and s into a number of rectangles whose sides

are smaller than 6. For

tj 4-t<t/f+l, SklSS i, 3 +l3tj.t<1j.f1 , _~~_ __.. (3.3)

U(t,s) belongs to the neighborhood which with the aid of (3.2) is

mapped analytically onto the neighborhood O of the point C = E.

We replace as shown above, the curve U(t,sk) by a piecewise smooth

curve V(t,sk), and we can assume that dII(t,.sa)| exists and is continu-
! dt 

ous when t # tj. Then, in each rectangle '(3.3) we interpolate the

corresponding C(t,s) linearly. The matrix :of functions V(t,s)'

which is obtained satisfies conditions i) and 2), which wwash to

be proved.

Because of this theorem, below we can restrict ourselves only

to considering piecewise smooth curves.

4. Structure of the Set -{H#()}

To each matrix H(t) of the coefficients of system (0.1) cor-

responds the monodrpmy matrix OX'PDiH((t)l) of system (0.1). The

mapping X = O[H(t)] is clearly a continuous mapping of onto "C

(see, for example, [12], pp. 38-39).

As we have s'hown in Par. 1, the "point" 'H(t)NC1E can be

- identified with the piecewise~ smooth, curve X(tj ,which begins, 

in E and ends in the point X = ([H(t)].

Below, when we discuss curves,- we will have in mind piece-

wise smooth curves.

We will adopt the following notation. The topological product

of the paths Xl(t) and X2(t), 0 ( t 4 1, Xi( 1) = X2(0) will be denoted
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by Xl(t) x X 2 (t). Thus,

IL' ' 2 - ---t ' /344

X (t) aX.()----- X3 (t)= x (2 \ ),X
X,(2t - l for <l t 

The pathsitraversed in the opposite. diriL.ction wilt' be deno, ted-
by X(-t> "as follows:

X(t)'i-1 X(1 t).. .

A closed path X(t) passed over m times will be denoted by X(t)[ m ] .

All the operations above on piecewise- smooth curves give again

piecewise smooth curves.

We will call two curves Xl(t) and X2 (t), 0 < t 4 1 which begin

at a common point and end in some set fl)'C@, homotopic modulo AtS

and we will write -_i

XI (t) X, (t) nmod T.1

if they can be deformed into one another without displacing the

endpoint from l '.

Homotopic curves will be denoted as follows:

Xl(t) ' X2 (t)

A necessary and sufficient condition that Xl(t) and X2(tj be

,homotopic' is that it (t)1fl.. - < t= l,.Y(O) = ) X 2 (I)".xist,

in mbod \'Ast( such that the paths Xl(t) x Y(t) and X2(t) are homotopic.

In fact, if such curve exists, the deformation

[XI [(s +l)t], o<t < 

Y (t,s) 1 Ot•
l ,': .(s,+, -, s1- t- . ,]

O 4 s 4 l'deforms the ':path rt -it nto the path X (t')xy(t) which : !c an ts :'.

be deformed into X
2
(t) without displacing the endpoints. During

both deformations, the endpoint remains in ; hence, (4.1) holds.

Conversely, if (4.1) is satisfied and X(t,s) is the correspond-

ing deformation, then we can take for Y(t), Y(t) = X(l,t).
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Theorem 4.1. Let.~/\ be a domain in __j and !: be its com-

plete image in? ;', (?i))== . If 9) is a simply connected set in

_i , then ?i!;\ decomposes into a countable number of homeomorphic
domains fn :

do m s, +, 9J,, o, J: when n, (4.2)

such that (TI) ==,,)= A

Proof. We select an arbitrary point X "I and we connect it /345

by the curve X( ):(t), 0 < t < 1 with, the.-matrix E. is the set of

all curves which begin in E and end in tSW~.in such a way that |X ()

The set of curves XO(t) which are homotopic. ,modul's9e -

will be denoted by 9.JO 9I 0o_9).

Let U(n)(t), O-.s t . 1 be a curve which begins and ends in E

such that

: Arg U'(t) ,- 2vt

(For U(n)(t) we can take the curve (1.8), Par. 1i;)

The curve
x(n)(t) = U(n)(t) x X(n)(t) (4.3)
T e of cu (tr X X (t) (4s3)

belongs to . The set of curves X(n)(t) which are homotopic
module -[o' will be denoted by '.11J) ,c'9)J . Clearly, the .

sets m.'9J, lare connected and open, and '(9 I),) it.

We will show that Un . Let i(17i

We connect Xa and X by the curve (t)()J1,_l.t Otl . The curve

X2 (t) = Xl(t) x Y(t)

which donsists of the curves Xl(t) and Y(t) ends in X0. Hence,

.\rY X'(t) - Arg X
(

°
)
(t) lo

1 7 We note that when we write :c'tiJ , we mean that the curve X(t)

belongs to the class of curves > The notation ( means

that for a fixed t the matrixlN(1)iolc 
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for some m =

i.e. X 2 (t) \

0, +1, +2, .... Then,

,ArgX2(tI 0- Arg X( "' (t) 1 = O,

X ( t ) . -Hence, !

X, (t) X("') (t) mod 3
im_

and /XT- ?(?E_9.' /

The domains t,,I do not intersect. In fact, let

We then have

Hence,

Then a curve

{X(t) E 9Jnr Sn., 114 n. .X (0 9RI , A r

(t) - X (" ' (t) imod $J1, "' R(t)> X(In:(t)iod jt.

X~"') () (t) mod Sj.

EYit) Ejl exists such that

X - (t)x Y(t) X

/346

The curve Y(t) is closed and

Arg Y' (t)|i= Arg X(n2 (t) ArgX(f) : (t)= 

Hence, the set iis not siIPrlY> connected in ~®. The contra-

diction which was obtained s'hows that the domains iZneand lmdo

not intersect.

What we must still prove is that the domains [9j are homeo-

morphic to one another. To each curve 0,(t)~9JMo we make correspond

the curve Xn(t) in accordance withn

(4.4)Xn(t) = Xo(t).U(n)(t)n 

Let

for t I,, , j,

for k '_ ]
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X 0(ts) 1 | for X

X tk (t - )+ 1] forfor ;•t'• I,

where k = s + 1, O0 s < 1. The deformation

|X (t, S) _XO (t, S) U( ) (t, s), ° S <

,deforms the-curve (4.4:)(s=0)' into a curve of the form (4.3) (X(0)(t) =

= X (t)) belonging to 9]t without displacing the endpoint-s. Hence,

[X"(!)_ER and formula (4.4) establish the homeomorphism of the domains

:9fl\ and lo0 .· This proves Theorem 4.1.

Remark. The following rule for numbering the domains \R2,I follows

from the proof of Theorem 4.1. An arbitrary index can be assigned to

a fixed domain- 9.3,/ . Then the remaining domains , lhlcan be numb-ered

in such a way that for any curves: x n(t),eJ and l X2()E9Mn7 the relation

:' Arg X2 (t)l- Arg X1 (t) '(=.Arg Y () +j 2(n2-fli)n, (4.5)

will be satisfied, where Y(t) is any curve which lies entirely in

t'j, and which connects the points Xl(l) = Y(O) and X2(l) = Y(1).

Let be a domain which is not simply connected in _.

Then a closed curve V(t), 0 < t '< 1 exists in it

:Arg V (I) I= 2u 0.

Without loss of generality, we can assume m > 0. The smallest m /347

will be called the index of the domain 9M!. Domains which are

simply connected. in X can be assigned an index which is equal

to zero.

Theorem 4.2. The complete image X .of the domain
18 in' m mutuallywith index m > 0 decomposes in into m mutually homeomorphic

domains ,31j;\ (j = 0, 1, m-l). In particular, if a closed

trajectory V(t), 0 < t < 1 exists in 7 such that .rg : (t)2o
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i is a domain.

'Proof. Let V(t-.)3,be the closed trajectory which exists by

hypothesis, such that ArgV-(t)lo=2 m3ov(t)E . We will connect
(0) (0) (1 )the matrices E and V(O) by the curve X (t), X(O)() = E, X((1)

= V(O). Let U(n)(t) be the same curves which were used in proving

Theorem 4.1, and define X(n)(t) by formula (4.3).

We will denote by 9Jj\/(j = 0, 1, ... , m-l). the set of trajec-

tories which are homotopic to X(j)(t) moduloe .' . Clearly,

!jJ0~ .are domains and (gJ.).=9J1.

1) We will show that

rn- i

Let iX(t) E X-, X(· We will connect X with V(O) by the

curve Y 0(t), Y(O)= X, Yo(J)=V(0)
'

, Yo(t)E9I . Let

ArgX () x Y) (t) x X, ° ([t)l "2n.

Then

"Arg[X (t). x Yo(t) x V (t)h'x X (t)l I-2(n +km:

We choose k (positive or negative) in such a way that

O - O< j=n+km<m.

Then
Arg [X (t) x Yo (t) x V (t[k l

] 1. 2rj + ArgX(° ) (t) l',.

i.e. Arg [X (t) x Y (t)] [ = Arg X
()

(t) I,"
t,

where .Y.(t))=Y o(t) 5V'(t)" ·Thus, X (t) .Y() (t, .X(0!- , which

proves (4.6).

2) The domains ;ilAdo not intersect. Let

,x''(tz) e 9,. fl <' .tim.
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We have X(t)(t) mod'rJtI /348
((1)N) (1) mod 9R, X(1) MXl°(t) ' mo .8

~"Hence, 'X(') (t) X" (t) mod 9.

Then a curve Y(tj)E'Ji exists such that

iX" (t) x Y (t) N X('
The curve Y(t) is closed, since X (1) = Xl(1) and

Arg Y(t) 2 2(I -k) < 2rnr, [
which contradicts the hypothesis that the index of is equal to

m. This proves Theorem 4.2.

Thus, we solved the problem which was formulated at the end of

the introduction. The index m of the domain is usually determined

easily after the domain l/,is given.

The connection between the statements of Theorems 4.1 and 4.2

and the concept of a: space covering is easily established.

The following can also be proved. Let Q be the set of all paths

which are homotopic to zero, which begin and end in E and let ill!

be a covering for the group t . The space ,U is homeomorphic

to the topological product x , and because of the correspon-

dence which was established, the boundedness and unboundedness

properties, the order, etc. of the solutions are only determined

by the "projection" H(t) in ilI.

We recall that · is a finite dimensional space of the same

dimension as &t, so that it can be studied in the same way as the
model of the functional space

For k = 1, the statements of Theorems 4.1 and 4.2 are very clear.

In this case, as we have shown above, the group "~ is homeomorphic

to the interior of a torus. The index m of the domain is a

number which indicates how many times the domain "kwas twisted"

in IO{. Thus, for example, the indices of the domains i 4 and |j1.i

shown in Fig. 3 are equal to zero and two,respectively. If we cut

,tl along some surface S (see Fig. 3) and take the countable number

of pieces which were so obtained, and join these together, identifying
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* ,Dt)identical points, we obtain the

"trope" 9, which by virtue of

the homeomorphism _fi can

be considered as themodel of the

~I \, ' space ] . It is easily seen that

L _ -0 in the process \lj1oa we will "gener-

ate" a countable number of domains,

Fig. 3. and !9Qi will "generate" two domains

in $?~ . This is also stated by

Theorems 4.1 and 4.2.

Theorem 4.3. 10 The set m for any k and the set X) , Ma /34'

for k i ltare domains.

When k = 1, the sets .:?gand Ma decompose into two series of

domains

;',A M~.e,,, Ma4,, (l = 0, : 1, ± 2,....

To the matrices H(t) from the sets '!;, M;, correspond systems whose

multipliers lie on the positive real axis, to the matrices H(t)

from the sets . ,,,M,,~ correspond systems with multipliers which .i

lie on the negative real axis.

30 The set 0 ldecomposes into 2 k series of domains ,
- i

)

,,- I; 0 ± 1,,O . .. i The index p determines the type of

distribution of the multipliers of the first and second kind'on the

unit sphere.l 9

40. The set /;\ rPdecomposes into 2 (2 k - 1) series of

domainsI -- . . .' ,v4,I,_+ ; l 0, .± 1, 2, . The index i determines

the type of distribution of the multipliers.

50. In 2°, 30, 40, the domains in one series, i.e. the domains

which differonly in the index n are homeomorphic. The numbering by

the index n of domains in one series obviates the statement which
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was formulated in the remark to Theorem 4.1.

To prove 10, we must prove in accordance with Theorems 3.2,

3.4 and 4.2 that in the set ;An.a and in the sets g\,. M.I there is

a closed curve V(;t), when k > 1, such that

Arg V (t) j1 = 2.

This is obvious. The curve V(t) can, for example,

follows:

-T-V (t) T-V2 (t) D.-
Q p7-1, ·

where T is any real non-singular matrix satisfying

the matrix V2 (t) has the form

lV2 (t)= (t) 0 
1

()t)=(1-3t)+ 3t when

VV.() (t (t) = w2(07 =1-(1->) 3) a
iii 1) ~ when

V2 M (3 = eIl~, ? (i) '(-

0 VI' (t)-: ' ( 2 ( t) =I - 3 (I-' 3
'-Then. --- :--- -- ",

2

be defined as

(4.7)

(4.8)

Eq. (4.8),

!O < t I< y,
t, .2

3 

o _ 11

and

-Arg V (t) l ArgiV2 (t) = cp (t)I 2

For the set For the set ma 1 < V < e, and for k 1,

the right members in expressions (4.7) and (4.8) have only the terms

V2(t) and I-2 For the set I >l 

In conclusion, we will consider certain examples.

1. Let D be a region in the interior of the unit circle which

is symmetric with respect to the real axis, and let AB be an arc

on the upper semicircle. For definiteness, let f9A be a set of

systems (0.1) for which the two multipliers Pi and P2 of the first

kind lie on the arc AB, and the four multipliers p
3
, p'', P3*w P4 *

in the interior of the region D (see Fig. 4). We thus specify the

setj, gR8 of its "projections" in Z in terms of the set 9 . It

is easily seen that f!iJA Bfis a domain. Consequently,(Theorem 2.4),
, -- '
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the corresponding set ARc:
l

of monodromy matrices is also a domain.

It is easily seen that the domain I[ is simply connected in .

This is proved in the same way as the simple connectedness of the

domains O~ and a ~('lin,! l.. Therefore, 9jRABldecomposes into a

countable number of mutually homeomorphic domains (Theorem 4.1).

We will now consider how a concrete closed curve iC()'lABi is

contracted into a point. We will first consider the movement of

Pl(t), p2(t) along the arc AB. If P1 (0) = pl( 1) = P1, then P2(0) =

= P2(1) = P2 and each curve Pl(t), p2(t) can be contracted in.:- an
obvious way into a point along the arc AB. If the multiplier Pl(t)

moves from the point P1 to the point p2, then P2(t) moves from

the point P2 to the point p1 . They meet at some point n on the

arc AB;because multipliersi of the same kind are "indistinguishable"

the movement which was described can be considered as the movement /351

of the multiplier pl(t) from the point p1 to the point n and back

to the point p1 , and that of the multiplier p2(t) from P2 to n and

then to P2. Each of these curves can be contracted into a poifnt.:

the first into the point Pl, the second into the point P2.

The multipliers in the domain D can be treated analogously

even more simply. The curve need not lie in the domain during the

deformation.

.If the arc AB coincides with the entire circle (or, includes

one of the points ±1), the corresponding set 95fABi (and therefore

also 9jABa, CHARY ) is not open. In fact, now, the elements C' for-

which the corresponding multipliers lie on the unit circle can be

arbitrarily close to the elements E9)z,\ for which the multipliers

of different kinds coincide.

2. We will consider the set 9)q of all systems (0.1) of order

twelve, for which four multipliers of the first kind lie in the

domain D and two multipliers pl, P2 of the first kind lie in the

annulus
t~~~~~~~~~~~~~~~~~~~~~~~~~~~~

50



which, by definition, does not intersect with the domain D. The

corresponding set Jjr'will clearly be open and connected. A closed

curve C(t) exists in it such that 'ArgC(t)jOt' . For such a

curve, we can take the curvefor which (see Fig. 4) the multiplier

P1 moves (in the counterclockwise

direction) along the arc plmp 2 of

the unit circle to the point p
2
and

the multiplier P
2
moves along the

4gg arc P
2
mpl to the point p1. The

multipliers in the domain D either

do not move or pass into one another

arbitrarily. Therefore, the index

Fig. 4I. -of the domain SRl (and hence also

of 9jl) is all equal to one, and

IC, is a domain in ?).

3. Let now 'j be the set which is the same as that defined

in the preceding example, with the additional condition:

p

where 0 is a fixed number. The corresponding set iS is clearly a

domain. Let C(t)E0jlbe a curve for which the multipliers p1 and P2
having completed one revolution on the unit circle in the clockwise

direction return to their original positions, satisfying, during the

movement, the condition (*). The remaining multipliers, for example,

need not move. Then,

It is also easily seen that for any closed curve Ci(t) E .\R Arg[.(tL)n>4=.\

Therefore, the index of the domain (903in r ain i ) is

two. (Consequently, the set ], lies in 16\ as shown for the set

~I/ in Fig. 3!") By Theorem 4.2, the set --jis the union' of two /352

non-intersecting domains.

Infinitely many such examples which can be made arbitrarily

complex--.can be given.

(Submitted 4 April 1956.)
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